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ABSTRACT

General results in the theory of time series in m dimensions are obtained,
thus providing a broad view applicable to the various models. The inter-
relationships among the various types of moving average models, MA, and auto-
regressive models, AR, and the general ARMA autoregressive movin vr ......
models are stressed., ~,

INTRODUCTION - "

General results in the theory of time series in m dimensions are determined.
These are: definitions of moving average, MA, models; autoregressive, AR,
models; and autoregressive moving average, ARMA models; stationarity and
invertibility; the characteristic function; the autocovariance and auto-
correlation function; the power spectrum; properties of MA, AR, and ARMA
models; the partial autocorrelation function; estimation; and a brief look at
the multivariate problem. Simulation and forecasting are considered by
Aroian and Taneja (1).

Important assumptions are outlined below: The characteristic of an event is
Z x t , x = (XlX2,...,),t, -<x<w, x-1 = (Xl- Xx2-t2,..,xm-2m). Weak

stationarity is assumed in time and space as a minimum assumption:

Pz E(zx,t)= 0, 02 . E(zx,t'1jz )2

Eax't 0, a D0,k - fz tz2 k) 2

= (lift 2,....,11m).

All second order moments exist. Note x may be any coordinate system; if x is
dropped, the time series is the usual one at a point; if t is dropped, then
the series is purely spatial. Note k may be plus or minus but k is plus
except in forecasting.

MODELS

The MA model is defined: via

Zx,t = n--XZ a x-n,t-k+ax,t (2.1)

n - (n ,n2 .nm) I .- -n. n 1

2
ax,t is an i.i.d. variable with mean zero, oa > 0, Bax,tzxL,tk -,

unless I - k " 0. Usually q r

-pinlq, likir, zx - a kl (2.2)
-p~~q,1,kr, x't W J -p ki1 O.ksx+n,t-kax '  li

an HA model of temporal order r, spatial order pi+qi in each spatial variable
xi' 1lim. As an example m - r - 1:
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CORRECTIONS
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1. P2 il - < < t < f not 0 < t <

2. P3 equation (3.7) replace by:

a( r n kd
SI I n,k Fx

3. P3 equation (
3 .1 1), replace by:

i = ( ¢ n Bk)dax

zx (BBtx,- ,k Fx Bt) ,t
x~~t x t d=0 ~ ~

4. P4 equation (3.14) in denominator:

2 , notn,k -- n,k

IRTIS c.?"

DTIC j,1!

. ...~'~jr __ __ _

Djstribut io'~

_Ava ;.bjj,-,3 Ca des
- :A''c -Ianj/ or ---cpct



zx,t I-lax,t-e 2ax-l,t-l+ax,t (2.3)

replacing the 4's by O's.

The AR model is defined:

Zx,t 'n-- kl n,kzx+n,t-k+ax,t '  (2.4)

temporal order r if likir. spatial order pi+qi, -qin~p, in each variable, xi,
lgim. An example is

. OlZx,t*l*2'x-1 t_l*ax,t (2.5)

The ARMA model is defined:z - k fi - u ea +a (2.6)S
Zx,t n--p k-i n,kZx+n,t-k" n-u ki nkx+nt-k (2.6)

of order r+s in the temporal domain, q+p, and u+v in each spatial variable.

The general case would be --<n-, ) t<-. This model is denoted by ARMA
(r,s;p,q;u,v). An example is:

= izx't-l+¢2Zx_1,t-l-e ax,t-e2ax-l't-l+ax't (2.7)

All the preceding are univariate cases.

Practical examples for m-1 are the flow characteristics of a river or a
manufacturing process; for m-2, the characteristics of a process in the plane
such as storms, social or economic processes, geological and geographical
processes in time including earthquakes; and for m-3 processes in space such
as weather processes, sunspots, comnunications, satellite tracking, and oil
exploration.

PROPERTIES OF MA, AR, AND ARMA MODELS

An MA model is stationary, and invertible dependent on n,k' and its represen-
tation as an infinite AR model. Define

Btz x,t - Zx,t-l'Ft = xizxt 0 Zx-62 ,t (3.1)

F - -l ~- ~Ii=j~FXi . B-il 6i . (6 l 6 2 " 6 im) i=a .x1  xi' i 6il'6 i2 .. iJ iI

Rewrite (2.2) in terms of (3.1).
z~ " (l1+-1p kI1 )a (3.2)

(l+ n- p k-i 'n,k x xt'()

where Fn _ (F
1
I, Fx

2, ...'Fxm)
x i X 2 x2

The characteristic function is
r n k (3.3)

(BxBt) n--p kLi *n,k x t'

and ax' t - l(B,Bt)zx,t * (3.4)

m
For invertibility (3.3) must converge on Si ilm

where S o a {Bt:lBtl<l)}, S i - {Bxi :IBx (l),
1 (3.5)

Si - {Fxi :IFxi>l), lgigm.

Define Y1,k - E(Zx,tzx-t,t-k), the autocovariance between zxt and sx-t,t-k*

Theorem 3.1. The autocovariance function of an HA process may be found by
multiplying (2.2) by z , where I - (l,...,im),and taking expectations;
or better, the &utocovt4*fi function



B B o0240,Bt)Y(FxFt) ,  (3.6)
-- k 2 e he

and ,k is the coefficient of both Bk and B_ Bt, with 10000X t wiha 0 o bigh

coefficient of B B0  1. Theorem 3.1 may be used to find p , . , for

MA, AR, and ARMA models. The autocorrelation function is no s mmetri in m
dimensions; it is symmetric to the origin x - 0, t - 0. Thus plo a 0_10,0k,

00-k' 1k = P-1-k' but Pim P to P-Em' 00k # Pk0" For mal, Pik will have the

same values in the first and third quadrants, and the second and fourth
quadrants. For m-2, four sets of equal p's occur. In m variable similar
results hold, as reported in Perry's ongoing Ph.D. thesis. An important cut-
off property for the MA models is given by:

Theorem 3.2. The autocorrelation function for a finite MA model is finite.
Use theorem 3.1 for the proof. This cutoff property is an important way of
determining where a process is MA, AR, or ARMA.

Theorem 3.3. If the conditions for invertibility are satisfied, every finite
MA process in m dimensions may be expressed as an infinite AR model. From
(3.4)

k[1 n k d
axt = q kl n,kFBt) t

and condition (3.5) must be satisfied.

Theorem 3.4. The power spectrum. Let Bt . exp-27if, Bx. = exp-2rigj, in the

autocovariance function, theorem 3.1, the power spectrum3of an MA process is:

p(f,g) = 2a '(exp-2nif, exp-2rig)

T(exp27rif, exp27ig) (3.8)

- 2oIV(exp-27iif, exp-2ig) 1
2

ao%1fl i/2, oiIgjjl/2, ljj<m.

Next AR processes are considered.

Theorem 3.5. The autocorrelation function of an AR process is found by
multiplying (2.4) by zxX,t-k and take expectations. For t a k = 0

2 :ln 2~ ? (3.9)
cz . a 1n- ¢ n,k~n,k1) -I

Note 0 0, andz

Px,t 'n--p k~l On,kox+n,t-k (3.10)

Replace x,t by m,n. Note P satisfies the same form as (2.4) for all {IkL,
except 9 - k - 0. The auto rrelation (cross correlation) function may be
plotted in m+l dimensions and is infinite in extent. As L or k or both
approach ±-, the corresponding o's approach zero, provided the O's are such
that the AR process is stationary. The difference system needs some Pik to
start the process.

Theorem 3.6. If conditions for stationarity (3.5) are satisfied, every
finite AR process may be represented by an infinite MA process.

Proof: From (2.4)
0-IBta~ n,,td ,3.11

Zx,t  (x'
5 t t (t nk xBt)ax (3.11)

Theorem 3.7. For invertibility of an MA model IB 1, IB Ili in (3.3) set

equal to zero restricting *n,k(n,k). For AR resbrictioha on *n,k the same

method is used in the corresponding characteristic equation of the AR model



O'(S IS~ (l=q - n,k)t (3.12)
0xBt) " n--q k-l "n,k x t1 " 1.2

This theorem may also be stated for the MA(AR) models, or in fact for the
ARMA model. The roots of the characteristic equation must lie outside the
unit circle in each variable 3. when all other B's are set to one. This
condition holds an stationarit in m dimensions, m+l variables, requires
stationarity in every direction in the m+1 variables.

Theorem 3.8. The power spectrum for an AR process is:

p(f,g) - 2ao210(exp-2rif, exp-2nig) 1-2

0 1 fj s 1/2, 0 1 Igj 9 1/2, 1 j 
( 3..

Note the similarity to (3.8).

Theorem 3.9. Given an AR process to determine p , it is necessary to first
find the corresponding MA expansion of the AR progss. Then

C Xm nl-o. JO *~n,k'n+t,k+m (.4

n=.o kZo nk

where C ,m is the covariance E(Zx,tx.,t m ). This is very important since

the recurrence relationship of plm given by (3.10) does not provide a way of

finding all the P1,m" An AR model may be simulated given ( n,k) . If this is

done a set of estimated P m,n are found. The true values are found from 0.14)

THE PARTIAL AUTOCORRELATION FUNCTION

One of the most important questions that must be faced is the choice of m.
Usually spatial considerations make clear the value of m. Otherwise choose
that m which minimizes 02, but theoretical considerations should have the
greater weight. If m is given, how is r the order determined? For the MA
model use the cutoff property of the autocorrelation function. For the AR
model the cutoff property is provided by the partial autocorrelation function.
For m-0, it is known that the last coefficient 0r in an AR model with terms

,# is a partial coefficient of correlation and more importantly r+i'i r de all zero. AR models in m dimensions have a similar property.
For r-1 in m dimensions m+l "last" coefficients 0 will be partial coefficients*1 of correlation, non-zero, but all other O's would be exactly zero. In
samples of n, n large these other O's will tend to be small instead of being
exactly zero as in the theoretical model.

The definition for the partial coefficient of correlation for AR models is
tij 0 0 for inl,2,...,m, jul,2,...r, -1 1 *ir 1 1 and *ij = 0 for i > m,

j > r. For any AR models for oij' i > m, i > r, one may prove 0 ij - 0.

YULE-WALKER EQUATIONS, AR MODELS

The Yule-Walker equations for AR models in m dimensions will be given.
Suppose

x t - lzXt.0 Xl+02.l,t.leaxt . (5.1)

Multiply (5.1) by the coefficients of 01 and 02? take expected values and
obtain the Yule-Walker equations

001 ' 01*02010

011 , 40110+02 (5.2)

which solved for a nd *2

01 -(00-0lPl)/-0)

•-



02 11-01°1o0)( 10

This is the usual least squares used in regression. Hence the Yule-Walker
equations in m dimensions for any order r may be found by the same method.

Thus the Yule-Walker equations will be of the form p - P 0, p and 0 are
column vectors and P is the matrix of correlations. By~the usual least) squares theory

V(O) n 1 (1-P1 )P2  ,

and if we substitute the sample values r for p then

t ) = n 1 (l-rl;)R2-

r -(r01 r11), R 1 r 1  -O

S1 . ,0), R 1 = (lr20 )- ( 1  , (5.5)

0 (1rl0 0

V(41 042  n (l-r0 01 1-r1102 )R2

*a - a0 n- (l-r 0 ) -- 2-20 02r

I 02 1 2 1

and ; .02 = -r10 " This method is general and if a Xt are distributed

normally the estimates 0 are asympototically unbiased, consistent and approx-
imately the maximum likelihood estimates; Perry and Aroian (2), Aroian and
Taneja (1) have extended this method to the MA and ARMA models.

ARMA MODELS

Denote the characteristic equation of the MA model by E(BxB t ) and that of the
AR model by (B x'Bt ) , then

O(B x Bt)Zx,t = G(BxBt)a ,t (6.1)

Bx - (B X.,BX2...,B xm), an m dimensional ARMA model of order (r,s;pq;uov).

Now (6.1) may be written as an infinite MA model:

Zxt = 0(BxBt) -(x Bt)axt ,(6.2)

or as an infinite AR model

ax t - 0(BxFB t )e 1(B ,Bt)zx 't  (6.3)

Both results are important, particularly (6.2), since it is useful in finding
Pm n' and in forecasting x+ ,t+t 'Litt2 2 0. The restrictions on and ei
for invertibility and stationirity of (6.1) are exactly those of the MA and
AR model jointly as given in theorem 3.7. An example is given for mo l, r a
r = 2 in Aroian and Taneja (1). The autocovariance functions is a combifa-
tion of those of the MA and AR models. The partial autocorrelation is similar
to that of the MA model.

The power spectrum is:

p(fg) - 2a 2 le1xp-2(if)exp-2niq) (6.4a j#(exp-2wi f,'exp-atig) I (.4

0 s Ifl s 1/2, 0 A 19 I 1 1/2, 1 , xj t m.

The ANA model may differ markedly from either the MA or AR model.



MULTIVARIATE AR MODELS

A brief description of the (efinition of an AR multivariate model is given:

Szxt a *(p,r)z_ P (7.1)

where x is the vector x - (xlX2,...,), t(p,r) is a matrix of Oij's of p

rows by rp columns, z, a column vector of p components, zit) j a column

vector of rp components, and a, a column vector of p components, a multi-

variate AR (p,m,r) model. The properties of the model, with an example p=2,
m-r-l,. are given by Aroian (3).

ACKNOWLEDGMENTS

We appreciate the help of Robert Perry, some of the results are from his
ongoing Ph.D. thesis; the comments of Vidya Taneja, and the support of the
Office of Naval Research under contract ONR N00014-77-C-0438. Aroian is
grateful to Dr. Bruno Paul for providing a guest house on Coronado Island
where he could work without interruption.

BIBLIOGRAPHY

1. Aroian, L.A. and Taneja, V. (1980). Some simple examples of time series
in m dimensions: an introduction. To be presented at l1th Annual
Conference on Modeling and Simulation, IEEE, Pittsburgh.

2. Perry, R. and Aroian, L.A. (1979). Of time and the river: time series in
m dimensions, the one dimensional autoregressive model. Proceeding s of
the Statistical Computing Section, Amer. Stat. Assoc. Annual Meeting,
pp. 383-389.

3. Aroian, L.A.(1979). Multivariate autoregressive time series in m
dimensions. Proceedings of the Business and Econmics Section, Amer. Stat.
Assoc. Annual Meeting, pp. 585-590.

4. *Aroian, L.A. (1980). Time series in m dimensions.aI
A 5. Box, G.E.P. and Jenkins, G.M. (1976). Time Series Analysis: Forecasting

and Control, rev. ed. San Francisco: Holden-Day, Inc.

6. Oprian, C., Taneja, V., Voss, D. and Aroian, L.A. (1980). General
considerations and interrelationships between MA and AR models, time
series in m dimensions, the ARMA model.

7. *Taneja, V. and Aroian, L.A. (1980). Time series in m dimensions, auto-
regressive models.

8. *Voss, D., Oprian, C., and Aroian, L.A. (1980). Moving average models,
time series in m dimensions.

Accepted for publication, Commun. Statist., Series B,



Unclassified

SECURITY CLASSIFICATI04 OV TH~IS PAGE IW'heR Date Potterod)

REPORT DOCUMENTATION PAGE DEOFDOPLTIG OM
I. REP'ORT NUMBER j2. GOVT ACCESS$ON NO. S. RECIPIENV'S CATALOG NUMBER

AES-8006 IpF--Aoq 021
4. TITLE fentI*UbiI1ie) S. TYPE oF REPORT & PERIOD COVERED

General Results, Time Series in M Dimensions Technical Report

6. PERFORMING ORG. REPORT NUMBER

AES'8006z
7. AUTHORfe) S. CONTRACT OR GRANT 0 NyER(4)

Leo A. Aroian and Josef Schmee N00014-77-C-0438

3. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Institute of Administration and Management AE OKUI UBR
Union College & University, Schenectady, NY 12308

It. CONTROLLING OFFICE NAME AND'ADDRESS Ia. REPORT DATE

Off ice of Naval Research Sept. 25, 1980
Statistics & Reliability Program 12. NUMBER OF PAGES

Office of Naval Research, Arlington, VA 22217 7
14. MONITORING AGENCY NAME A ADORESS(iI 411lg0ei front Co~uem-i Office) IS. SECURITY CLASS. (of III#e lePet)

Unclassified

So. DECLASSIFIC ATIONI DOWNGRADING
SCH EDULE

16. DISTRIBUTION STATEMENT (of thie Repei)

Approved for public release, distribution unclassified

17. DISTRIBUTION STATEMENT (.1IA the 681106 0014010d ill 00ch 20. M41~feueUIf kern XVPeSt)

is. SUPPLEMENTARY NOTES
Presented to the 11th Annual Pittsburgh Conference on Modeling & Simulation,
May 1-2, 1980, Univ. of Pittsburgh. Paper will appear in the Proceedings
of the Conference.

13. KEY WORDS (Cntinu0ee ove"e sie fiftenosomy n7md Idenify by Abi neibet)
time series, m dimensions, general results, AR models, MA models, ARMA models,
spatial time, partial autocorrelation, cross correlation

20. ABSTRACT (ConiMMOe enWO devete aId. I960 00n111ee i d dn"0pIpNs&nmb
General results in the theory of time series in mn dimensions are obtained,
thus providing a broad view applicable to the various models. The inter-
relationships among the various types of moving average models, MA, and auto-
regressive models, AR, and the general ARMA autoregressive moving average
models are stressed.

DOn toorio 1473 ImI@ NOV 09#1 8619SOLITE Onclossif led
S~W *I2SI46I I SCURITY CLASAIpICATION OF THIS PAGE (Wheon be-lexaltee)




